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The mathematical formalism of direct methods is here applied to the SIRAS

(single-isomorphous replacement combined with anomalous scattering) case.

Speci®cally, the joint probability distribution of three structure factors, which

plays the central role in the probabilistic theory of the two-phase structure

invariants (doublets), is derived. This distribution leads directly to the

conditional probability distribution of the two-phase structure invariants, given

the values of selected sets of magnitudes. Furthermore, a probabilistic formula

for estimating individual phases of the derivative structure is derived, provided

that the heavy-atom substructure is assumed to be known. The formulas were

tested for experimental SIRAS data and results are reported.

1. Introduction

The integration of direct methods with macromolecular crys-

tallographic techniques via probabilistic theory was initiated

by Hauptman in 1982. He developed the probabilistic theory

of two-phase (doublet) and three-phase (triplet) structure

invariants in the SIR (single-derivative isomorphous replace-

ment) and SAS (single-wavelength anomalous scattering)

cases (Hauptman, 1982a,b). In his approach, the neighbor-

hood principle was applied to a pair of isomorphous structures

and the joint probability distributions of one doublet and eight

triplets were derived. The same distributions were later

obtained from the theory of representations (Giacovazzo,

1983; Giacovazzo et al., 1988). In the past 20 years, great

progress has been made in the probabilistic approach to (i)

improve the estimates of the cosine values of the triplets by

incorporating heavy-atom information into Hauptman's

formulas (Fortier et al. 1985, 1986; Furey et al. 1990); (ii)

resolve the phase ambiguity arising from the SIR or SAS case

by incorporating phase-doublet information into the triplet

probability formula (Fan et al., 1984); (iii) extend probabilistic

theory to the MAD (multiwavelength anomalous scattering)

case (Giacovazzo & Siliqi, 2001).

SIRAS (single isomorphous replacement combined with

anomalous scattering) plays a very important role in macro-

molecular structure determination owing to simultaneous

knowledge of �ano and �iso, which in theory allows one to

solve the phase problem via an algebraic approach (Kartha,

1975). However, the probabilistic approach provides robust

tools to handle errors arising from experimental SIRAS data

measurements, imperfect isomorphism and heavy-atom

substructure determination, etc. In this paper, we develop the

probabilistic theory in the SIRAS case. In particular, we

develop the probabilistic formula to estimate individual phase

values by exploiting the probabilistic relationship among three

doublets arising in the SIRAS case. Such a relationship does

not exist in the SIR or SAS case because only one doublet

exists in those cases. Let us assume that F and G are a pair of

isomorphous structures. Structures F and G are said to be

isomorphous if the atomic position vectors of F coincide with

those of G, and some of the atoms ofF (or G) may have atomic

scattering factors equal to zero [corresponding to vacancies in

F (or G)]. In the SIRAS case, normal diffraction data are

available for F and anomalous scattering diffraction data are

available for G. One example of the SIRAS case is that F is a

sulfur-containing native protein and G is obtained from F by

replacing some (or all) of the sulfur atoms in F by selenium

atoms. One special case is that F is a known heavy-atom

substructure of G (whence F and G are isomorphous). The

realization of this goal is particularly important since a

powerful method for determining the heavy-atom substruc-

ture of a macromolecule by combining Shake-and-Bake

phasing (Weeks et al., 1994) with single-wavelength anomalous

diffraction data, even at a resolution of 3±4 AÊ , has recently

been elucidated (e.g. Deacon et al., 2000). At least one

substructure having as many as 160 selenium atoms has been

routinely determined in this way (Delft, personal communi-

cation), and it now appears that much larger substructures will

also be readily solvable. This work strongly suggests that the

ability to develop the technique of direct methods in the

SIRAS case would provide an improved method for phase

estimation.

In this paper, the joint probability distribution of three

structure factors, which plays the central role in the derivation



of the probabilistic estimates of the three doublets, is

obtained. Owing to their extreme length, details of the deri-

vation are deposited; only major formulas are given explicitly

here. This joint probability distribution leads directly to the

major results of this paper: (i) the conditional probability

distribution of the two-phase structure invariants (doublets),

given selected magnitudes; (ii) the conditional probability

distribution of a single phase when a heavy-atom substructure

is known. The formulas were tested using experimental

SIRAS data and results are reported in x5.

2. The probabilistic theory of the doublets

For an arbitrary pair of isomorphous structures �F ;G�, we

assume that normal diffraction intensities are available for F ,

and single-wavelength anomalous scattering data are available

for G. In the absence of anomalous scatterers, the normalized

structure factor EH of F is de®ned by

EH � jEHj exp�i'H� � �1=�1=2
H �

PN
j�1

fjH exp�2�iH � rj�; �1�

where fjH is the (real) normal atomic scattering factor of the

atom labeled j, rj is the position vector of the jth atom, N is the

number of atoms in the unit cell and

�H �
PN
j�1

f 2
jH : �2�

In the presence of anomalous scatterers, the normalized

structure factor GH of G is de®ned by

GH � jGHj exp�i H� � �1=�1=2
H �

PN
j�1

jgjH j exp�i��jH � 2�H � rj��;

�3�
where gjH � g0

jH � g0j � ig00j is the (in general complex) atomic

scattering factor of the atom labeled j, g0
jH is the (real) atomic

scattering factor in the absence of anomalous scattering, g0j
and g00j are the real and imaginary dispersion corrections,

jgjHj � ��g0
jH � g0j�2 � �g00j �2�1=2, �jH � tanÿ1�g00j =�g0

jH � g0j��, and

�H �
PN
j�1

jgjH j2: �4�

Replacing H by �H in (3), we have

G �H � jG �Hj exp�i �H� � �1=�1=2
H �

PN
j�1

jgjHj exp�i��jH ÿ 2�H � rj��:

�5�
Owing to the presence of the anomalous scatterers, Friedel's

law does not hold and jGHj and jG �Hj,  H and ÿ �H are in

general distinct. In what follows, the atomic scattering factors

fjH and gjH , hence �H and �H , are presumed to be known.

It will be assumed throughout this paper that the atomic

position vectors rj are primitive random variables that are

uniformly and independently distributed in the unit cell. Thus,

the three structure factors EH, GH and G �H , as functions of the

primitive random variables rj, are themselves random vari-

ables. Owing to the breakdown of Friedel's law, there are now

three distinct two-phase structure invariants (the doublets):

!1 � 'H ÿ  H; �6�
!2 � 'H �  �H; �7�
!3 �  H �  �H : �8�

It is worth pointing out that only !1 exists in the SIR case and

only !3 exists in the SAS case. Therefore, the doublet theory

developed in this paper has no analog in the SIR or SAS case.

The ®rst neighborhood of each of the doublets (6)±(8) is

de®ned to consist of the three magnitudes

R � jEHj; S � jGHj; �S � jG �Hj �9�
and the three phases

' � 'H;  �  H; � �  �H : �10�
For non-negative integers m and n, de®ne

Cmn �
1

��m
H�

n
H�1=2

XN

j�1

f m
jHjgjHjn cos�n�jH�; �11�

Smn �
1

��m
H�

n
H�1=2

XN

j�1

f m
jHjgjHjn sin�n�jH�: �12�

Then, Xmn and �mn are uniquely de®ned by:

Xmn cos �mn � Cmn; Xmn sin �mn � ÿSmn: �13�
Hence, in all that follows, Cmn, Smn, Xmn and �mn are presumed

to be known.

Denote by P�R; S; �S;';  ; � � the joint probability distri-

bution of the magnitudes R, S, �S and the phases ',  , � of the

normalized structure factors EH, GH , G �H . Then the joint

probability distribution is given by the sixfold integral (Karle

& Hauptman, 1958)

P�R; S; �S; '; ; � �

� �1=�2��6�RS �S
R1

�;�; ���0

R2�
;�; ���0

�� �� expfÿi�R� cos� ÿ '�

� S� cos�� ÿ  � � �S �� cos� �� ÿ � ��g

�QN
j�1

qj��; �; ��; ; �; ��� d� d� d �� d d� d ��; �14�

where

qj��; �; ��; ; �; ��� � hexpfi�fjH�
ÿ1=2
H �� cos�2�H � rj ÿ �

� i�jgjHj�ÿ1=2
H ��� cos��jH � 2�H � rj ÿ ��

� �� cos��jH ÿ 2�H � rj ÿ ����girj
:

Appendix A1 contains some preliminary formulas, Appendix

B the derivation of qj and
QN

j�1 qj, and Appendix C the

evaluation of the sixfold integral (14). The ®nal formula, taken

from Appendix C, is simply
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P�R; S; �S; '; ; � �

� RS �S

�3�1ÿ X2
11��1ÿ Z2�

� exp

�
ÿ �1ÿ X2

02�R2 � �1ÿ X2
11��S2 � �S2�

�1ÿ X2
11��1ÿ Z2�

�
� exp �W1RS cos�'ÿ  � ��
�W1R�S cos�'� � ÿ �� �W2S �S cos� � � � ���; �15�

where X11, X02 are de®ned by (13),

Z2 � �C2
11 � S2

11 � C2
02 � S2

02 ÿ 2C2
11C02 � 2S2

11C02

ÿ 4C11S11S02��1ÿ C2
11 ÿ S2

11�ÿ1; �16�
U cos � � C11 ÿ C11C02 ÿ S11S02; �17�
U sin � � S11 � S11C02 ÿ C11S02; �18�

V cos� � C02 ÿ C2
11 � S2

11; �19�
V sin� � 2C11S11 ÿ S02; �20�

and

W1 �
2U

�1ÿ X2
11��1ÿ Z2� ; �21�

W2 �
2V

�1ÿ X2
11��1ÿ Z2� : �22�

Hence, the joint probability distribution P�R; S; �S; '; ; � �
[equation (15)] depends on parameters X11, X02, Z, W1, W2, �
and �, all of which are in turn de®ned by (16)±(22) in terms of

Cmn and Smn, each of which is expressed by means of (11)±(12)

in terms of the known atomic scattering factors. Hence, for

each ®xed H, the distribution (15) depends on parameters, all

of which may be presumed to be known.

If we allow C11 � S11 � 0, then the joint distribution (15)

reduces to

P�S; �S; ; � � � S �S

�2�1ÿ X2
02�

exp

�
ÿ S2 � �S2

1ÿ X2
02

� 2S �SX02

1ÿ X2
02

� cos� � � � �02�
�
: �23�

Equation (23) coincides with the joint distribution of the two-

phase structure invariants in the SAS case obtained by

Hauptman (1982b).

3. The conditional probability distribution without
heavy-atom substructure information

With lack of heavy-atom substructure information, we assume

that F is the native protein and G is the derivative structure.

Then F and G are a pair of isomorphous structures, and the

joint probability distribution [equation (15)] can be applied

directly. Speci®cally, three magnitudes R, S, �S are known, three

phases ',  and � are unknown.

3.1. The conditional probability distribution of !1 � 'ÿ  !1 � 'ÿ  
Denote by P�!1jR; S; �S� the conditional probability distri-

bution of the random variable !1 � 'ÿ  , given R, S, �S. Then

P�!1jR; S; �S� is derived from (15) by ®xing R, S, �S, integrating

with respect to � from 0 to 2�, and multiplying by a suitable

normalizing constant. The ®nal formula, the second major

result of this paper, is

P�!1jR; S; �S� � �2�I0�A1��ÿ1 exp�A1 cos�!1 ÿ �1��; �24�
where A1 and �1 are de®ned by

A1 cos �1 � W1RS cos �� 2T�W1R �S�T�W2S �S� cos��� ��;
�25�

A1 sin �1 � ÿW1RS sin �� 2T�W1R�S�T�W2S �S� sin��� ��;
�26�

with T�z� � I1�z�=I0�z� being the ratio of two modi®ed Bessel

functions. Equation (24) implies that the expected value of

cos�!1 ÿ �1� is T�A1� and, in the favorable case that A1 is

large,

!1 � 'ÿ  � �1: �27�

3.2. The conditional probability distribution of !2 � '� � !2 � 'ÿ  
Denote by P�!2jR; S; �S� the conditional probability distri-

bution of the random variable !2 � '� � , given R, S, �S. Then,

P�!2jR; S; �S� is derived from (15) by ®xing R, S, �S, integrating

with respect to  from 0 to 2� and multiplying by a suitable

normalizing constant. The ®nal formula, the third major result

of this paper, is

P�!2jR; S; �S� � �2�I0�A2��ÿ1 exp�A2 cos�!2 ÿ �2��; �28�
where A2 and �2 are de®ned by

A2 cos �2 � W1R �S cos �� 2T�W1RS�T�W2S �S� cos��� ��;
�29�

A2 sin �2 � W1R �S sin �ÿ 2T�W1RS�T�W2S �S� sin��� ��:
�30�

Equation (28) implies that the expected value of cos�!2 ÿ �2�
is T�A2� and, in the favorable case that A2 is large,

!2 � '� � � �2: �31�

Table 1
Basic information of test data sets.

AXE II AdoHcy

Protein atoms 1442 6787
Heavy atoms 4 Iodine 30 Selenium
Space group P212121 C222
Resolution (AÊ ) 2.0 2.8
f 0, f 00 ÿ6.70, 4.50 ÿ7.35, 5.92
a, b, c 34.95, 61.05, 72.61 91.93, 168.02, 133.77
Native data 8501 26211
Derivative data 15957 50466



3.3. The conditional probability distribution of !3 �  � � !3 �  ÿ  
Denote by P�!3jR; S; �S� the conditional probability distri-

bution of the random variable !3 �  � � , given R, S, �S.

Then, P�!3jR; S; �S� is derived from (15) by ®xing R, S, �S,

integrating with respect to ' from 0 to 2� and multiplying by a

suitable normalizing constant. The ®nal formula, the fourth

major result of this paper, is

P�!3jR; S; �S� � �2�I0�A3��ÿ1 exp�A3 cos�!3 ÿ �3��; �32�

where A3 and �3 are de®ned by

A3 cos �3 � W2S �S cos�� 2T�W1RS�T�W1R �S� cos�2��; �33�
A3 sin �3 � ÿW2S �S sin�� 2T�W1RS�T�W1R�S� sin�2��: �34�

Equation (32) implies that the expected value of cos�!3 ÿ �3�
is T�A3� and, in the favorable case that A3 is large,

!3 �  � � � �3: �35�
Again, it should be stressed that the conditional probability

distributions of the three doublets, !1, !2 and !3, given the

values R, S and �S of the three magnitudes jEHj, jGHj and jG �Hj,
depend not only on R, S and �S but on the atomic scattering

factors, presumed to be known.

4. The conditional probability distribution with heavy-
atom substructure information

When heavy-atom substructure information is available, we

assume that G is the derivative structure and F is the known

heavy-atom substructure of G; hence, F and G are a pair of

isomorphous structures. Speci®cally, three magnitudes R, S, �S
and one phase ' are known; only  and � are unknowns.

Denote by P� jR; S; �S;'� and �P� � jR; S; �S;'� the conditional

probability distributions of the random variable  or � ,

respectively, given R, S, �S and '. Then, P� jR; S; �S; '� or
�P� � jR; S; �S;'� is derived from (15) by ®xing R, S, �S and ',

integrating with respect to � or  from 0 to 2�, respectively,

and multiplying by a suitable normalizing constant. The ®nal

formula, the ®fth and sixth major results of this paper, are

P� jR; S; �S; '� � �2�I0�Q��ÿ1 exp�Q cos� ÿ ��� �36�
and

�P� � jR; S; �S; '� � �2�I0� �Q��ÿ1 exp� �Q cos� � ÿ ���� �37�
with Q, �, �Q and �� de®ned by

Q cos� � W1RS cos�'� �� � 2T2T3 cos�'ÿ �ÿ ��; �38�
Q sin � � W1RS sin�'� �� � 2T2T3 sin�'ÿ �ÿ ��; �39�
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Table 2
Average value of concentration parameter Am, hAmi, and its corresponding average magnitude of the doublet error, hj!m ÿ �mji, using experimental
SIRAS data from proteins (a) AXE II and (b) AdoHcy.

All re¯ections are sorted in descending order of values of the Am's and partitioned into eight equal groups.

Group No.
Re¯ections
in group hA1i hj!1 ÿ �1ji (�) hA2i hj!2 ÿ �2ji (�) hA3i hj!3 ÿ �3ji (�)

(a) AXE II
1 1000 3.87 3.7 3.89 3.7 4.99 3.7
2 1000 2.23 5.3 2.23 5.3 2.75 1.5
3 1000 1.55 6.4 1.55 6.4 1.90 1.6
4 1000 1.09 7.1 1.09 7.2 1.36 1.8
5 1000 0.77 9.4 0.77 9.3 0.98 2.5
6 1000 0.53 10.0 0.53 10.5 0.68 2.9
7 1000 0.33 13.9 0.34 13.3 0.44 3.7
8 1218 0.17 20.7 0.17 21.0 0.23 4.6
(b) AdoHcy
1 3340 5.87 2.1 5.87 2.2 5.84 2.3
2 3340 2.65 2.9 2.65 3.0 2.65 3.1
3 3340 1.69 3.6 1.68 3.7 2.04 3.8
4 3340 1.09 4.4 1.09 4.5 1.48 4.5
5 3340 0.67 5.3 0.67 5.4 1.09 5.5
6 3340 0.39 6.9 0.39 7.0 0.80 7.0
7 3340 0.19 10.0 0.19 9.9 0.57 9.9
8 3343 0.05 26.2 0.05 26.5 0.39 21.6

Figure 1
Geometry relationship among FP, F�D , �FÿD ��, FS and F 00S , where FP is the
structure factor of the native protein, F�D and �FÿD �� are the structure
factors of the derivative structure, FS and F 00S are the contributions to the
structure factor of the heavy-atom substructure arising from the real and
imaginary components of the anomalous scattering, respectively.
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and

�Q cos �� � W2R �S cos�'ÿ �� � 2T1T3 cos�'� �� ��; �40�
�Q sin �� � ÿW2R �S sin�'ÿ �� ÿ 2T1T3 sin�'� �� ��; �41�

where W1 and W2 are de®ned by (21) and (22), and T1, T2 and

T3 are calculated via the cosine law (see Fig. 1):

T1 �
jF�D j2 � jFS � F 00S j2 ÿ jFPj2

2jF�D jjFS � F 00S j
; �42�

T2 �
jFÿD j2 � jFS ÿ F 00S j2 ÿ jFPj2

2jFÿD jjFS ÿ F 00S j
; �43�

T3 �
jF�D j2 � jFÿD j2 ÿ 4jF 00S j2

2jF�D jjFÿD j
: �44�

Equations (36) and (37) imply: (i) when Q is large,  � �; (ii)

when �Q is large, � � ��.

5. Numerical tests

The probabilistic formulas derived in the previous two

sections were tested using experimental SIRAS data from (i)

the protein acetylxylan esterase (AXE II) (Ghosh et al. 1999),

(ii) the protein S-adenosylhomocysteine (AdoHcy) hydrolase

(Turner et al. 1998). AXE II belongs to space group P212121,

with unit-cell parameters a � 34:95, b � 61:05 and

c � 72:61 AÊ . AdoHcy belongs to space group C222, with unit-

cell parameters a � 91:93, b � 168:02, c � 137:77 AÊ . The

heavy-atom substructures, consisting of 4 iodine atoms for

AXE II and 30 selenium atoms for AdoHcy, respectively, were

determined by the direct method Shake-and-Bake (Weeks et

al. 1994) using SAS data alone. The basic structural informa-

tion for these two proteins is listed in Table 1.

5.1. The probabilistic estimate of doublets

The probabilistic formulas (24), (28) and (32) were tested

using the experimental SIRAS data listed in Table 1. The

parameters Am and �m, m � 1; 2; 3, which de®ne the condi-

tional probability distributions of the doublets !m, were

calculated using formulas (25) and (26), (29) and (30), (33)

and (34), respectively. All re¯ections were arranged in

descending order of values of the Am's, and partitioned into

eight equal groups (with the exception of the last group) for

both proteins. For each group, the average value, hAmi, and

the corresponding average value of the doublet error,

hj!m ÿ �mji, were calculated and are reported in Table 2 for

(a) AXE II, (b) AdoHcy.

Table 2 shows that probabilistic formulas (24), (28) and (32)

yield reliable (and unique) estimates of tens of thousands of

doublets !m for both proteins. There is a strong correlation

between average doublet error, hj!m ÿ �mji, and its concen-

tration parameter value, hAmi, i.e. the larger the value of hAmi,
the smaller the average doublet error hj!m ÿ �mji.

5.2. The probabilistic estimate of individual phases

The probabilistic formula (36), together with formulas (38)

and (39), was tested with the same proteins listed in Table 1. It

should be mentioned that the following steps were taken to

Table 3
Average values of Q, hQi, and the average phase errors, hj ÿ �ji, using
experimental SIRAS data from proteins AXE II and AdoHcy.

All re¯ections are sorted in descending order of values of the Q's and
cumulated in eight groups.

AXE II AdoHcy

Group
No.

Re¯ections
in group hQi

hj ÿ �ji
(�)

Re¯ections
in group hQi

hj ÿ �ji
(�)

1 1000 2.06 30.1 3000 1.90 47.1
2 2000 1.84 43.3 6000 1.78 48.6
3 3000 1.71 48.1 9000 1.71 53.4
4 4000 1.61 50.8 12000 1.65 55.1
5 5000 1.52 55.1 15000 1.58 58.7
6 6000 1.44 56.6 18000 1.50 60.2
7 7000 1.34 58.4 21000 1.40 62.2
8 8000 1.22 61.3 24000 1.28 64.3

Figure 2
Scatter diagrams of the estimated phase ��� versus the true phase � �, as
well as the line  � �, for (a) the top 2000 re¯ections from AXE II and
(b) the top 5000 re¯ections from AdoHcy having the largest values of Q
calculated by formulas (38) and (39).



deal with the errors arising from data measurements, anom-

alous substructure determination and the `lack of closure': (i)

the native data, the anomalous scattering derivative data and

the calculated heavy-atom substructure data were put on an

absolute scale; (ii) a threshold cutoff jFobsj> 3��jFobsj� was

applied to all re¯ections; (iii) for those `lack of closure'

re¯ections, values of Tm, m � 1; 2; 3, calculated from formulas

(42)±(44) were truncated by means of

Tm � 0:8

Tm � ÿ0:8

if Tm > 1:0;

if Tm < ÿ 1:0:
�45�

The parameters Q and �, which de®ne the conditional prob-

ability distribution (36) of the phase  , were calculated using

formulas (38) and (39). All re¯ections were then arranged in

descending order of values of the Q's. The average value of Q,

hQi, and the corresponding average magnitude of the phase

error, hj ÿ �ji, in eight cumulative groups, are calculated and

reported in Table 3. A scatter diagram of the estimated phase

(�) versus the true phase ( ), as well as the line  � �, is

plotted in Fig. 2 for (a) the top 2000 re¯ections from AXE II

and (b) the top 5000 re¯ections from AdoHcy having the

largest values of Q. Table 3 shows again the correlation

between the concentration parameter Q and its corresponding

individual phase error for both proteins, i.e. the larger the

concentration parameter, the smaller the individual phase

error. Fig. 2 shows that (i) the probability formula yields

reliable estimates of a large number of individual phases

ranging from ÿ180 to 180�, (ii) the probability estimate is

unbiased, and (iii) most of the points plotted are centered

within a narrow band around  � � or around the upper left

corner or the lower right corner.

6. Conclusions

In this paper, the goal of integrating the techniques of direct

methods, in particular the appropriate advances in the math-

ematical formalism, with SIRAS is realized. Speci®cally, the

joint probability distribution of three structure factors is

obtained. This joint distribution leads directly to the condi-

tional distributions of the two-phase structure invariants,

given selected magnitudes. In particular, the formula for

estimating individual phases, when a heavy-atom substructure

is known, is obtained. The results of the initial applications,

using the experimental SIRAS data from the proteins AXE II

and AdoHcy, are promising.

The evidence in the previous section strongly shows that it is

possible to provide good initial phases for unknown macro-

molecular structures by probabilistic techniques, provided that

SIRAS data are available. It should be stressed that we assume

that the substructure has been determined from the SAS data

by some direct-methods technique. It is worth pointing out

that low resolution and incompleteness of data are no longer

major problems, since the probabilistic estimates are based on

the individual re¯ections only. This implies that our method

can be applied to very low resolution data, provided only that

the heavy-atom substructure is known.

The authors wish to express their appreciation to Dr Bles-
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providing them with test data. This research was supported by

NIH grant GM-46733.
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